EFFECTS OF PROSTAGLANDIN E₂, INDOMETHACIN, TRIFLUOPERAZINE AND DRUGS AFFECTING THE CYTOSKELETON ON COLLAGENASE PRODUCTION BY CULTURED ADHERENT RHEUMATOID SYNOVIAL CELLS

JEAN-MICHEL DAYER,* MERRILEE S. ROELKE and STEPHEN M. KRANE†
Department of Medicine, Harvard Medical School, and the Medical Services (Arthritis Unit),
Massachusetts General Hospital, Boston, MA 02114, U.S.A.

(Received 28 April 1983; accepted 1 February 1984)

Abstract—Cultured adherent rheumatoid synovial cells with fibroblast properties release large amounts of collagenase and prostaglandin E₂ (PGE₂) into the medium. With age in culture and passage of the cells, the levels of collagenase and PGE₂ decrease, but can be increased by a factor (MCF; mononuclear cell factor) released by cultured human blood monocyte-macrophages. The magnitude of the stimulation varies with different synovial cell strains. To determine some of the mechanisms which regulate the collagenase response, synovial cells were exposed to a cyclooxygenase inhibitor (indomethacin) and substances which alter the cytoskeleton (cytochalasin B or colchicine) or interact with Ca²⁺ calmodulin (trifluoperazine). The collagenase response was retained even when PGE₂ synthesis was totally blocked with indomethacin. The collagenase response, however, was blunted at high indomethacin concentrations $(>10 \,\mu\text{M})$ and paradoxically augmented at lower indomethacin concentrations $(0.001 \,\mu\text{M})$. In some synovial cell strains, the blunting effect of $10 \,\mu\mathrm{M}$ indomethacin was eversed by the addition of low concentrations of exogenous PGE₂ (10 ng/ml). Preincubation of synovial cells for 1 or 24 hr with colchicine or cytochalasin B $(1-10 \mu M)$ resulted in an augmented collagenase and PGE₂ response to MCF. Cells preincubated or incubated with $1-50 \,\mu\text{M}$ trifluoperazine, a phenothiazine, also augmented collagenase stimulation by MCF, but, in contrast to colchicine or cytochalasin B, trifluoperazine suppressed the PGE₂ response. Thus, although PGE₂ and collagenase production by synovial cells may be dissociated, altering ambient PGE2 levels affected basal collagenase production and modulated the collagenase response to MCF.

The destruction of juxtasynovial bone, cartilage and tendons is a characteristic of inflammatory joint disease, such as rheumatoid arthritis. The release of collagenase and prostaglandins, such as prostaglandin E₂ (PGE₂), by cells in the adjacent synovial pannus is considered to play a role in the pathogenesis of the lesion [1, 2]. Animal collagenases act on types I and III collagens at a similar rate but cleave type II collagen at a slower rate. These enzymes, which act at neutral pH, produce specific cleavages, across the three chains of the helical collagen molecules at a point 3/4 the distance from the amino terminus. The cleaved fragments are then solubilized from the fibril. The collagenases secreted by several different animal tissues, including rheumatoid synovial fragments in culture, can utilize the interstitial collagens found in the joint as substrates [1]. Products of arachidonic acid metabolism, such as PGE₂, in addition to their potential role in accelerating bone resorption, may be proinflammatory (alter vascular permeability and produce pain) or anti-inflammatory (impair lymphocyte reactivity, decrease lymphokine production) [3].

These topics have been reviewed recently [4]. In a previous report, we demonstrated that adherent 'stellate" synovial cells in primary culture produce large amounts of collagenase and PGE₂. After passage and time the basal levels of collagenase and PGE, decrease, and the stellate morphology tends to diminish. At this stage, however, the synovial cells can be stimulated by a factor (MCF; mononuclear cell factor) released by blood monocytes to synthesize high levels of collagenase and PGE₂[5-7]. Furthermore, the stellate aspect can be reinduced by MCF, mediated by increases in ambient PGE2 concentrations [8]. MCF, which has an apparent molecular weight of 15,000 daltons by gel filtration, after various chromatographic steps, still stimulates synthesis of both collagenase and PGE₂[9]. Purified MCF shares biological properties with interleukin 1 [10].

Although production of collagenase and PGE₂ can always be stimulated by MCF, the levels of these two products can be dissociated under certain conditions. In contrast to glucocorticoids, which block both collagenase and PGE₂ production, indomethacin, a cyclooxygenase inhibitor, always suppresses PGE₂ levels while variably affecting collagenase levels. Our objectives in the present report were to investigate possible mechanisms whereby collagenase and PGE₂ production are linked or dissociated in the synovial cell culture system.

It had been shown previously that the cAMP content of adherent synovial cells is increased by expos-

^{*} Present address: Department of Medicine, Division of Immunology and Allergy, Hopital Cantonal Universitaire, 1211 Geneva, Switzerland.

[†] Address all correspondence to: Stephen M. Krane, M.D., The Arthritis Unit, Massachusetts General Hospital, Boston, MA 02114.

ure to PGE₂ and that MCF in the presence of indomethacin potentiates this cAMP response to exogenous PGE₂ [11]. Thus, the influence of PGE₂ concentrations on collagenase production may, in part, be mediated by cAMP. Observations of this sort have been made in other systems, such as in murine peritoneal macrophages [12]. It has also been shown in other systems that compounds such as cytochalasin B, which bind to and dissaggregate microfilaments [13], or colchicine, which binds to tubulin and disrupts microtubules [14], also stimulate production of latent collagenase. The arrangement of the microtubules and microfilaments is also regulated by the adenylate cyclase system [15]. We therefore designed experiments to determine whether altering the state of the cytoskeleton prior to or during MCF stimulation modifies the MCF response as measured by collagenase and PGE₂. Furthermore, since it has been shown that calmodulin can stimulate phospholipase A₂ activity in isolated platelet membranes [16] and trifluoperazine has been found to inhibit that stimulation, we examined the effects of trifluoperazine in this system. We found that cytochalasin B and colchicine potentiated both the collagenase- and PGE₇-stimulating effects of MCF. Indomethacin, at relatively high concentrations, in some but not all synovial cell cultures blunted the collagenase responses which could then be restored by exogenous PGE₂. Trifluoperazine, in contrast, potentiated the effects of MCF on collagenase production but suppressed the increase in PGE₂ synth-

MATERIALS AND METHODS

Synovial cell culture. Cultures of adherent rheumatoid synovial cells were prepared and maintained as in previous reports [3]. In the experiments to be described, these cells were used between the first and fourth passage and plated in culture wells, 16 mm diameter (Costar, Data Packaging Corp., Cambridge, MA), at $5-10 \times 10^4$ cells per well in Dulbecco's modified Eagle's medium [DMEM; Grand Island Biological Co. (GIBCO), Grand Island, NY] with 10% fetal calf serum (FCS, Microbiological Associates, Bethesda, MD) and penicil-(10 units/ml), streptomycin $(100 \,\mu \text{g/ml})$ (GIBCO). Incubations were carried out for 72 hr after which media were removed and assayed for collagenase activity and PGE2 concentration.

Mononuclear cell factor (MCF). Mononuclear cell factor was obtained from pooled medium conditioned by cultured human blood mononuclear cells as described previously [9, 11]. The material used in the experiments reported here was prepared according to the techniques previously described, by chromatography on Ultrogel AcA54 (LKB Instruments, Inc. Rockville, MD) followed by chromatography on DEAE 52 cellulose [9, 11].

Collagenase assay. For assays of collagenase activity, [14C]glycine-labeled guinea pig skin collagen (sp. act. $\sim 10,000 \text{ dpm/}\mu\text{g}$) was used. [14C]Collagen was reconstituted as fibrils in 40 mM Tris–HCl, pH 7.5, 120 mM NaCl, 2.7 mM CaCl₂. One unit of collagenase activity is defined as the solubilization of 1 μ g of reconstituted fibrils per min at 37°. Incuba-

tion varied from 1 to 24 hr depending upon the activity. All assays included a sample incubated with trypsin, $100 \mu g/ml$, to control for the extent of denaturation of the collagen substrate. To detect activity in samples containing 10% FCS, samples were first activated with trypsin-TPCK (Worthington TRTPCK), final concentration $200 \mu g/ml$, in 100 mM Tris-HCl, pH 7.4, 5 mM CaCl₂. After incubation for 10 min at 25° , soybean trypsin inhibitor (Worthington, SI) in the same buffer was added to give a final concentration of $500 \mu g/ml$. An aliquot portion of this solution was then assayed on the [14 C]collagen fibrils. as described [3].

Prostaglandin assay. Prostaglandin concentrations were determined by radioimmunoassay utilizing an antiserum with specificity towards prostaglandin E, A and B [3] provided by Dr. L. Levine (Brandeis University, Waltham, MA). In previous reports, it had been shown by thin-layer chromatography that approximately 80% of the prostaglandin E + A + B was accounted for by PGE₂ and the remainder by PGE₁ [3].

Cell counting. After removing the medium, cells were trypsinized and counted using a Coulter counter model 2 (Coulter Electronics, Inc., Hialeah, FL) or a hemocytometer. PGE₂ was provided by Dr. J. Pike (Upjohn Co., Kalamazoo, MI) and prepared by diluting a stock solution of 1 mg/ml in absolute ethanol with buffer or DMEM, 10% FCS. Indomethacin (Merck Sharpe & Dohme, West Point, PA) was prepared by diluting a stock solution of 10 mM in ethanol with DMEM, 10% FCS. Cytochalasin B was obtained from the Aldrich Chemical Co. (Milwaukee, WI) and colchicine from the Sigma Chemical Co. (St. Louis, MO). Trifluoperazine dihydrochloride salt (Stelazine) was a gift of Dr. R. M. Myerson, Smith Kline & French Laboratories (Philadelphia, PA).

RESULTS

Collagenase and PGE₂ production by synovial cells in the presence of indomethacin. To determine the extent to which collagenase production is dependent upon PGE₂ levels, we examined twelve strains of synovial cells at the first passage when still producing high levels of collagenase and PGE₂ (Fig. 1). The absolute levels of collagenase in the absence of the drug ranged from 0.02 to 60.1 units/10⁶ cells/day (mean, 7.57) and those of PGE₂ ranged from 0.89 to 522.5 ng/10⁶ cells/day (mean 56.5). Since the absolute levels of collagenase and PGE2 varied from one specimen to another, the effects of indomethacin are presented in Fig. 1 as a percentage of the levels in the absence of the drug. The mean concentration of indomethacin which resulted in 50% inhibition of PGE₂ synthesis in the twelve synovial cell strains was

In contrast, even at concentrations greater than 0.01 μ M, indomethacin produced considerably less inhibition of collagenase production. Increases in collagenase levels above controls were observed at low concentrations of indomethacin (0.001 μ M) in five of the twelve cultures, whose data was summarized in Fig. 1. Increasing the concentration of indomethacin to 1 μ M markedly inhibited PGE₂ synthesis whereas

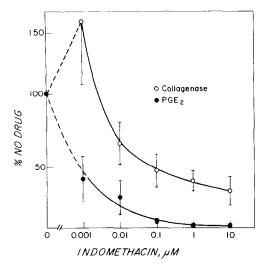


Fig. 1. Effect of indomethacin on collagenase and PGE_2 production by unstimulated adherent rheumatoid synovial cells. Synovial cell strains (N = 12) at the first passage were incubated for 3 days at 0.05×10^6 cells/well/0.5 ml DMEM, 10% FCS in the absence of indomethacin or the presence of various concentrations of indomethacin. Medium was then removed, and PGE_2 concentration (\blacksquare) and collagenase activity (\bigcirc) were determined. Values indicate percent activity \pm S.E.M. in the absence of drug.

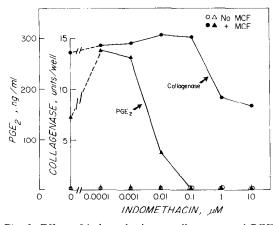


Fig. 2. Effect of indomethacin on collagenase and PGE_2 production by synovial cells with and without stimulation with mononuclear cell factor (MCF). One strain of synovial cells at the third passage was incubated under conditions similar to those described in Fig. 1. In this experiment cells were $(\bullet, \blacktriangle)$ or were not (\bigcirc, \triangle) stimulated with MCF. Medium was removed and assayed for collagenase activity (\bullet, \bigcirc) or PGE_2 concentration $(\blacktriangle, \triangle)$. Values represent means of duplicate wells.

collagenase production was inhibited only by a mean of 55%. Even at $1 \mu M$ indomethacin collagenase production by other strains of synovial cells (data not shown) was unchanged compared to the untreated cultures.

In older cultures at later passages where the cells usually required stimulation with MCF in order to obtain measurable collagenase and PGE₂ levels in the medium, a similar pattern was also observed. The results of the effects of different concentrations of

indomethacin on collagenase and PGE_2 production in a representative culture are shown in Fig. 2. In this third passage culture, the levels of collagenase and PGE_2 were not measurable without MCF stimulation. When cells were stimulated with MCF, PGE_2 levels were 14 ng/ml and collagenase activity 6.5 units/well. Increases in PGE_2 at the lowest concentration of indomethacin tested (0.1 and 1 nM) were noted. However, at drug levels (1 μ M) where PGE_2 production was nearly abolished, collagenase levels were unaffected.

In eleven other synovial cell cultures examined in the second to the fourth passage, incubation with MCF resulted in an increase in medium PGE2 concentrations ranging from 2- to 452-fold and in collagenase activity ranging from 1.3- to 150-fold depending upon the sample (data not shown). The stimulation of PGE₂ synthesis in these cells exposed to MCF was inhibited by a mean of 97% (range 93–99%) in the presence of 10 μ M indomethacin. In contrast, the mean inhibition of the MCF-stimulated collagenase production by indomethacin in these synovial cell strains stimulated with MCF was only 28% (range 0-90%). It should be noted that indomethacin had no effect at all on MCF-stimulated collagenase activity in four of these cell strains. The results demonstrate that collagenase production by individual specimens of synovial cells is variably affected by indomethacin. Attempts to determine the mechanisms for this variability were unsuccessful. Differences in morphology, density, or age and passage of the cultures were not determinants of the pattern of response to indomethacin.

Effect of exogenous PGE 2 on collagenase production. Since the synovial cell strains responded variably to indomethacin in the absence or presence of MCF, experiments were designed to test the possibilities that indomethacin could regulate collagenase production directly or indirectly through PGE, released into the medium. We chose cultures in which MCF-stimulated collagenase production was inhibited by indomethacin, as shown in Table 1. To examine the hypothesis that endogenous PGE₂ might be one of the modulators, we added exogenous PGE₂ to synovial cell cultures maintained in the absence or presence of indomethacin, stimulated or unstimulated by MCF. Furthermore, we attempted to determine the concentration of PGE₂ required to restore the blunting effect of indomethacin on MCF-treated cells. As shown in Table 1 in synovial strain number 1, 0.01 µg/ml of PGE₂ was sufficient to restore the collagenase response. Addition of exogenous PGE₂ to cell strain number 2, at $0.01 \,\mu\text{g/ml}$, actually increased collagenase production above that observed in synovial cells exposed to MCF alone, suggesting a potentiation by exogenous PGE2 of the MCF effect. This pattern of decrease in collagenase production by indomethacin in the presence of MCF was usually observed only at relatively high concentrations of indomethacin (10 μ M or greater) and only in approximately one quarter of the cultures examined. In most instances, collagenase production was barely affected by the drug. In view of these experiments suggesting that collagenase levels can be modulated by PGE₂ levels, other compounds were also studied.

Cell strain	Incubation conditions	Endogenous PGE ₂ (ng/ml)	Collagenase (units/10° cells/day) With exogenous PGE ₂ (µg/ml)					
number								
			0	0.01	0.05	0.1	1.0	
1	Control	8.54	1.02	0.56		0.80	0.31	
		± 1.22	± 0.03	± 0.23		$\pm~0.21$	+ 0.08	
	MCF	58.40	65.69	87.20		59.90	54.10	
		± 7.34	+ 3.93	± 17.60		± 5.50	± 5.72	
	MCF + indomethacin,	3.8	5.84	72.06		73.54	53.92	
	10 μM	± 1.1	± 0.98	± 10.14		+ 14.09	± 2.92	
	Indomethacin,	< 0.4	0.30	2.03		1.31	0.73	
	$10\mu\mathrm{M}$		$\pm~0.28$	± 0.86		± 0.70	± 0.26	
2	Control	3.03	0.08	0.11	0.11	0.10	0.36	
		± 0.46	± 0.03	± 0.01	± 0.01	± 0.01	€ 0.05	

349.28

 ± 24.82

2.30

 ± 0.60

 ± 0.12

1.39

Table 1. Dose response of exogenous PGE2 on collagenase production by synovial cells*

5.15

2.38

 ± 0.40

 ± 0.30

 ± 0.05

0.12

2.99

 ± 0.30

23.40

 ± 2.40

 ± 0.06

0.12

0.93

± 0.10

£ 2.70

+0.08

6.62

0.13

0.89

6.53

0.15

 ± 0.01

 ± 1.30

 ± 0.05

0.11

2.05

0.14

 ± 0.01

 ± 1.20

± 0.04

Table 2. Effects of cytochalasin B and colchicine on MCF responses in synovial cells*

Preincubation 1 hr			genase cells/3 days)	PGE_2 (ng/10 ⁶ cells/3 days)		
	MCF	Expt. 1	Expt. 2	Expt. 1	Expt. 2	
Control	_	0.01 ± 0.01	0.10 ± 0.05	250	725 ± 43	
	+	17.30 ± 1.72	46.82 ± 3.93	$6,197 \pm 20$	$8,733 \pm 634$	
Cytochalasin B, 1 µM	-	0.09 ± 0.04	0.13 ± 0.02	240 ± 2	135 ± 36	
	+	30.68 ± 5.30	57.66 ± 5.44	$7,792 \pm 355$	$10,073 \pm 390$	
Cytochalasin B, 0.1 µM	_	0.02 ± 0.01	0.20 ± 0.07	261 ± 2	136 ± 16	
•	+	26.33 ± 4.60	39.86 ± 2.05	$8,140 \pm 180$	$15,665 \pm 2,730$	
Colchicine, 1 µM	_	1.09 ± 0.05	0.29 ± 0.19	209 ± 72	169 ± 17	
•	+	38.52 ± 3.05	44.76 ± 3.21	$18,859 \pm 448$	$16,998 \pm 2,635$	
Colchicine, 0.1 µM		0.16 ± 0.05	0.14 ± 0.12	120 ± 10	167 ± 27	
, , .	+	50.22 ± 1.66	63.63 ± 0.27	$2,989 \pm 494$	$12,735 \pm 1,540$	

^{*} Two different strains (experiments 1 and 2) of synovial cells at the third passage were preincubated for 1 hr with medium alone (control), cytochalasin B or colchicine. The cells were then washed three times with medium alone and further incubated in the presence or absence of MCF for 72 hr. Medium was removed and assayed for PGE₂ concentration and collagenase activity. Values represent means ± S.E.M. of triplicate wells.

Effects of cytochalasin B, colchicine and trifluoperazine on MCF response. Observations that PGE, markedly stimulates cellular cAMP content and that PGE₂ is at least one factor responsible for the stellate shape of the synovial cells [8] led us to examine effects of drugs which influence the cytoskeleton. Some substances which act on components of the cytoskeleton (e.g. colchicine or cytochalasin B) have been shown to stimulate both collagenase and PGE₂ in several cell culture systems [17–19]. Several hormones which act at the cell membrane appear to affect at least two interdependent systems: levels of cAMP through adenylate cyclase and levels of intracellular calcium which may act through calmodulin. For these reasons, a drug which binds to Ca2+-calmodulin complexes was also investigated. By utilizing such agents, the relationships between PGE₂

MCF

MCF + indomethacin,

 $10 \mu M$

Indomethacin,

 $10 \mu M$

production and collagenase synthesis might be further defined. As shown in Table 2, preincubation for as short a period as 1 hr with either cytochalasin B $(1 \mu M)$ or colchicine $(0.1 \mu M)$ usually had a significant effect on the MCF stimulation. Similar results were also obtained with a preincubation period of 24 hr with both drugs (data not shown). The actions of these agents were more pronounced in augmenting the collagenase response to MCF as contrasted with that of PGE₂. A slight stimulation by the drugs themselves without MCF was also observed, even though these agents were not present during the subsequent 72 hr of incubation (Table 2). The potentiation was observed at the two different concentrations of either cytochalasin B or colchicine tested. Similar effects of these drugs alone on primary cultures were also observed although the range of stimulation was low

^{*} Synovial cell strains at the fourth (number 1) or fifth passage (number 2) were incubated under the various conditions in medium alone (control), MCF, MCF plus indomethacin, or indomethacin. Buffer alone or exogenous PGE $_2$ at indicated concentrations was added at time zero, 24 hr and 48 hr to reach indicated concentrations. Values represent means + S.E.M. of triplicate wells.

Preincubation 1 hr	Incubation 72 hr	Collagenase (units/10 ⁶ cells/3 days)		PGE_2 (ng/ 10^6 cells/3 days)	
	MCF	Expt. 1	Expt. 2	Expt. 1	Expt. 2
Control	_	0.05 ± 0.04	0.02 ± 0.02	27 ± 5	13 ± 2
	+	4.55 ± 0.70	2.11 ± 0.79	628 ± 93	85 ± 16
Γrifluoperazine, 50 μM	_	0.07 ± 0.03	0.01 ± 0.01	17 ± 2	5 ± 1
•	+	14.59 ± 3.10	3.54 ± 1.28	171 ± 20	19 ± 1

Table 3. Effects of trifluoperazine on MCF response in synovial cells*

Table 4. Comparative effects of indomethacin and trifluoperazine on stimulated (+MCF) and unstimulated (-MCF) synovial cells*

	Collagenase (units/10 ⁶ cells/3 days)		PGE ₂ (ng/10 ⁶ cells/3 days)	
	(-)MCF	(+)MCF	(-)MCF	(+)MCF
Control	2.1	9.6	4.0	79.0
Indomethacin, 0.01 µM	3.7	9.8	0.1	0.5
Trifluoperazine, $25 \mu M$	5.1	14.9	1.1	6.1

^{*} Synovial cell strains at the second passage were incubated for 72 hr in the presence or absence of MCF with medium alone (control), indomethacin, or trifluoperazine. Medium was removed and assayed for PGE₂ concentration and collagenase activity. Values represent means ± S.E.M. of triplicate wells.

perhaps due to the high basal levels of collagenase and PGE_2 (data not shown).

We also observed that preincubation for as short a period as 1 hr with 50 μ M trifluoperazine induced an augmentation of the MCF response by the synovial cells as measured by collagenase production but, in the same experiments, a decrease in MCF response as measured by PGE₂ production (Table 3). This dissociation of collagenase and PGE₂ response is similar to that observed in some experiments described earlier using low concentrations of indomethacin and raises the possibility that the collagenase increase is due solely to the decrease in PGE₂ levels. Therefore, experiments were designed to compare the effects of indomethacin and trifluoperazine on the same cells, as described in Table 4. Synovial cells were exposed to either drug with and without MCF stimulation, and collagenase and PGE, were measured after 3 days of culture under the conditions described. In cells without MCF, collagenase levels were increased slightly with low concentrations of indomethacin (10 nM) or trifluoperazine (25 µM). PGE₂ production was inhibited by ~40% at 1 nM indomethacin and by greater than 99% at 0.1 μ M in the presence of MCF (data not shown). In contrast, when collagenase levels were stimulated above control by MCF in the presence of trifluoperazine, PGE₂ levels were clearly decreased. The results suggest that the collagenase stimulation by MCF in the presence of trifluoperazine is not PGE₂ dependent. The concentrations of trifluoperazine used did not alter cell viability, shape or number.

DISCUSSION

The rheumatoid synovial cell cultures, in which large amounts of latent collagenase and PGE2 are synthesized and released into the medium either spontaneously or under MCF stimulation, provide a useful system for studying effects of drugs and for examining factors that control the degradative activity of the inflammatory tissue. In previous work from this laboratory and that of others, it has been shown that some agents (e.g. glucocorticoids) decrease production of both collagenase and PGE₂, whereas others (e.g. indomethacin) predominantly affect the levels of PGE₂[3]. In the present report we have shown that collagenase production in early, active cultures was usually unaffected by addition of low concentrations (e.g. 1 nM) of indomethacin which, in contrast, blocked PGE2 synthesis greater than \sim 50%. Even in the presence of MCF, such indomethacin concentrations usually did not inhibit and, in some instances actually increased medium collagenase levels. At higher concentrations of indomethacin $(1-10 \mu M)$, which inhibited PGE₂ synthesis more than 95%, collagenase production was variably inhibited. This inhibition by indomethacin was reversed by the addition of small amounts of exogenous PGE₂. This suggests that collagenase inhibition is not a direct effect of the drug itself at this concentration but is mediated by PGE₂, although alterations in the concentration of other arachidonic acid metabolites might result from the action of indomethacin.

^{*} Two different strains of synovial cells at the second passage were preincubated for 1 hr with medium alone (control) or trifluoperazine ($50 \mu M$). The cells were then washed three times with medium alone and further incubated in presence or absence of MCF for 72 hr. Medium was removed and assayed for PGE₂ concentration and collagenase activity. Values represent means \pm S.E.M. of triplicate wells.

Depending upon the culture conditions, there is probably an optimal concentration of PGE, necessary for maximal collagenase production. The absolute level of PGE₂ is probably not the only determinant of the regulation of collagenase production; the relative sensitivity of the target cells to effects of PGE₂, such as increasing cellular cAMP content, is also important [11]. We suggest that exposure to indomethacin, which blocks PGE2 release, will not only alter the basal cAMP content in the cells, but also their response to subsequent changes in ambient PGE₂ levels. The cAMP content may be one determinant of the cellular response to MCF. It should be emphasized, however, that MCF itself does not affect the adenylate cyclase system directly but does so via its effects on PGE₂[11].

The findings in our experiments are consistent with those reported by Wahl et al. [17]. In murine peritoneal macrophages, addition of indomethacin to endotoxin- or muramyl dipeptide-stimulated cells resulted in a marked decrease in collagenase production [17, 18], suggesting a prostaglandin- and cAMPdependent step in the synthesis of the enzyme. The addition of exogenous PGE2 or dibutyryl cAMP production collagenase in restored indomethacin-inhibited cultures [8, 18]. The addition of either exogenous PGE₂, or dibutyryl cAMP was not sufficient to initiate collagenase synthesis, however. In the synovial cells, addition of PGE2 alone did not markedly affect basal collagenase production. Moreover, the collagenase dependence on prostaglandin synthesis in the murine macrophages is considerably greater than in the human synovial cells. Although PGE₂ could possibly function in the synovial cell system by inducing elevations in the intracellular concentration of cAMP, inhibition of MCFinduced PGE₂ synthesis by indomethacin results in no change in basal intracellular cAMP levels [11]. In the indomethacin-treated cells, which are exquisitely sensitive to PGE2, a low ambient concentration of PGE₂ may be just sufficient to affect cell responses.

There are several lines of evidence in support of a functional role of cAMP in the regulation of microtubule assembly [15]. It was therefore of interest to evaluate the possible role of microtubules and microfilaments in the modulation of collagenase and PGE₂ production induced by MCF. It had also been shown in prior studies of organ and cell culture systems that agents such as colchicine or cytochalasin B can stimulate collagenase production [19–22].

We recently reported that the stellate morphology of the adherent synovial cells can be induced by PGE₂, presumably mediated by effects on adenylate cyclase, since addition of 8-bromo cAMP produces similar morphological changes [8]. MCF can also induce similar changes in late passage cells, which can be abolished by the addition of indomethacin but reproduced by the subsequent addition of PGE₂ to the cultures. Changes in cell shape are dependent upon the state of the cytoskeleton and are influenced by cAMP. However, the stellate configuration is not a requirement for collagenase production, since addition of indomethacin to MCF-treated cultures abrogates the morphological changes but has relatively little effect on collagenase. Furthermore, whereas preincubation with colchicine or cytochalasin B clearly potentiates the MCF stimulation and increases basal levels of collagenase, colchicine (but not cytochalasin B) blocks the development of the stellate appearance of the cells [8]. However, neither of these agents dissociates the MCF stimulation of collagenase and PGE₂ production. It is also unlikely that MCF acts solely as an endogenous colchicine-like factor, since MCF stimulation is over and above that produced by colchicine and the effects on cell shape, as discussed, are totally different.

Other control mechanisms implicated in microtubule assembly are related to levels of intracellular Ca2+ and Ca2+-dependent protein phosphorylation [15, 23, 24]. Trifluoperazine is known to bind to the Ca²⁺-calmodulin complex [25, 26] and acts to inhibit biological functions presumably carried out by this complex [27]. In contrast to the results obtained with colchicine and cytochalasin B, trifluoperazine while augmenting the stimulatory effects of MCF on collagenase synthesis blunts the stimulatory effects on PGE₂ synthesis. In our experiments preincubation or coincubation with trifluoperazine decreased PGE₂ synthesis but increased collagenase synthesis particularly in MCF-treated cultures. We cannot be certain that trifluoperazine binds to the Ca²⁺ calmodulin in the cell since binding has been demonstrated only in cell extracts. However, the effects of trifluoperazine in augmenting the collagenase response to MCF are probably not all explainable by effects on PGE₂, since a similar decrease in PGE2 levels produced by indomethacin does not augment MCF-stimulated collagenase synthesis. It is also possible that other actions of trifluoperazine, e.g. lipophilic effects on cell membranes, could contribute to this augmentation [28, 29]. For example, another phenthiazine derivative, chlorpromazine, has been shown to prevent the increased adenylate cyclase activity in bovine thyroid membranes induced by thyroid stimulating hormone (TSH) and PGE [30, 31]. Phenothiazines also inhibit phospholipase C in mouse macrophages [32]. Phosphatidic acid, a product of the reaction catalyzed by phospholipase C, could subsequently act as a calcium ionophore [33]. In other studies, it has been suggested that calmodulin can stimulate phospholipase A₂ directly [16]. By this mechanism, drugs which bind to Ca2+ calmodulin complexes would therefore decrease PGE2 production [34]. Calcium is also required for the stimulation of prostaglandin synthesis by tumor promotors such as certain phorbol esters [35]. Evidence has been obtained that phorbol ester receptors may be protein kinase C [36, 37], an enzyme which is activated by Ca 2+.

The major observations that have emerged from this study are that the ambient level of PGE₂ modulated collagenase production, probably mediated by effects of PGE₂ on adenylate cyclase and elevation of cellular cAMP content. Indomethacin affected collagenase production indirectly, by decreasing ambient PGE₂ levels, and the effects of the drug were reversed by restoring these PGE₂ levels. Trifluoperazine somehow dissociated collagenase from PGE₂ production under conditions where cells were stimulated by MCF. The mechanisms of these effects have not yet been elucidated. However, further studies which would provide insight into these

mechanisms would possibly lead to better strategies for therapy of the inflammatory process which leads to destruction of the extracellular matrix of the joint and other tissues.

Acknowledgements—We thank Margaret Jacobs and Martin Bush for technical assistance and Dianne Malcuit and Michele Angelo for preparation of the manuscript. This work has been supported by USPHS Grants AM-03564 and AM-07258 and grants from the Arthritis Foundation. This is publication 949 of the Robert W. Lovett Memorial Group for the Study of Diseases Causing Deformities.

REFERENCES

- 1. S. M. Krane, J. invest. Derm. 79, 83s (1982).
- D. R. Robinson, J-M. Dayer and S. M. Krane, Ann. N.Y. Acad. Sci. 332, 279 (1979).
- J-M. Dayer, S. M. Krane, R. G. G. Russell and D. R. Robinson, Proc. natn. Acad. Sci. U.S.A. 73, 945 (1976).
- W. F. Stenson and C. W. Parker, in Research Monographs in Immunology (Ed. J. L. Turk), Immunopharmacology (Eds. P. Sirois and H. RolaPleszczynski), Vol. 4, p. 75. Elsevier, Amsterdam (1982).
- J-M. Dayer, R. G. G. Russell and S. M. Krane, *Science* 195, 181 (1977).
- J-M. Dayer, D. R. Robinson and S. M. Krane, J. exp. Med. 145, 1399 (1977).
- J-M. Dayer, J. Bréard, L. Chess and S. M. Krane, J. clin. Invest. 64, 1386 (1979).
- D. G. Baker, J-M. Dayer, M. S. Roelke, H. R. Schumacher and S. M. Krane, *Arthritis Rheum.* 19, 555 (1982).
- J-M. Dayer, M. L. Stephenson, E. Schmidt, W. Karge and S. M. Krane, Fedn Eur. Biochem. Soc. Lett. 124, 253 (1981).
- S. B. Mizel, J-M. Dayer, S. M. Krane and S. E. Mergenhagen, *Proc. natn. Acad. Sci. U.S.A.* 78, 2474 (1981).
- J-M. Dayer, S. R. Goldring, D. R. Robinson and S. M. Krane, *Biochim. biophys. Acta* 586, 87 (1979).
- L. M. Wahl, C. E. Olsen, A. L. Sandberg and S. E. Mergenhagen, *Proc. natn. Acad. Sci. U.S.A.* 74, 4955 (1977).
- M. D. Flanagan and S. Lin, J. biol. Chem. 255, 835 (1980).
- L. Wilson and A. Taylor, *J. membr. Biol.* 40, 237 (1978).
- 15. J. R. Dedman, B. R. Brinkley and A. R. Means, in Advances in Cyclic Nucleotide Research (Eds. P.

- Greengard and G. A. Robison), Vol. 11, p. 131. Raven Press, New York (1979).
- P. Y-K. Wong and W. Y. Cheung, Biochem. biophys. Res. Commun. 90, 473 (1979).
- L. M. Wahl, C. E. Olsen, S. M. Wahl, J. B. McCarthy, A. L. Sandberg and S. E. Mergenhagen, Ann. N.Y. Acad. Sci. 332, 271 (1979).
- L. M. Wahl, S. M. Wahl and J. B. McCarthy, in Macrophage Regulation of Immunity (Eds. E. R. Unanue and A. S. Rosenthal), p. 491. Academic Press, New York (1980).
- E. D. Harris, Jr. and S. M. Krane, Arthritis Rheum. 14, 669 (1971).
- E. D. Harris, Jr., J. J. Reynolds and Z. Werb, *Nature*, Lond. 257, 243 (1975).
- D. R. Robinson, H. Smith, M. B. McGuire and L. Levine, *Prostaglandins* 10, 67 (1975).
- B. Johnson-Muller and J. Gross, *Proc. natn. Acad. Sci. U.S.A.* 75, 4417 (1978).
- J. M. Marcum, J. R. Dedman, B. R. Brinkley and A. R. Means, *Proc. natn. Acad. Sci. U.S.A.* 75, 3771 (1978).
- D. A. Ausiello and J. Orloff, in Handbook of Experimental Pharmacology, Cyclic Nucleotides Part II: Physiology and Pharmacology (Eds. J. W. Kebanian and J. A. Nathanson), Vol. 58, p. 271. Springer, Berlin (1982).
- R. M. Levin and B. Weiss, *Molec. Pharmac.* 12, 581 (1976).
- 26. W. Y. Cheung, Science 207, 19 (1980).
- A. Ilundain and R. J. Naftalin, *Nature*, *Lond.* 279, 446 (1979).
- B. D. Roufogalis, *Biochem, biophys. Res. Commun.* 98, 607 (1981).
- B. Weiss, W. C. Prozialeck and T. L. Wallace, *Biochem. Pharmac.* 31, 2217 (1982).
- 30. K. Yamashita, G. Bloom, B. Rainard, U. Zor and J. B. Field, *Metabolism* 19, 1109 (1970).
- J. Wolff and A. B. Jones, *Proc. natn. Acad. Sci. U.S.A.* 65, 454 (1970).
- P. D. Wightman, M. E. Dahlgren, J. C. Hall, P. Davies and R. J. Bonney, *Biochem. J.* 197, 523 (1981).
- 33. C. N. Serhan, J. Fridovich, E. J. Goetzl, P. B. Dunham and G. Weissmann, *J. biol. Chem.* **257**, 4746 (1982).
- P. A. Craven and F. R. DeRubertis, J. biol. Chem. 258, 4814 (1983).
- 35. G. T. Snoek and L. Levine, *Cancer Res.* 43, 4743 (1983).
- J. E. Niedel, L. J. Kuhn and G. R. Vandenbark, *Proc. natn. Acad. Sci. U.S.A.* 80, 36 (1983).
- U. Kikkawa, Y. Takai, Y. Tanaka, R. Miyake and Y. Nishizuka, *J. biol. Chem.* 258, 11442 (1983).